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Abstract—In this paper, we present a random cascaded-
regression copse (R-CR-C) for robust facial landmark detection.
Its key innovations include a new parallel cascade structure
design, and an adaptive scheme for scale-invariant shape update
and local feature extraction. Evaluation on two challenging
benchmarks shows the superiority of the proposed algorithm
to state-of-the-art methods.

Index Terms—Facial landmark detection, cascaded regression,
adaptive shape update.

I. INTRODUCTION

OVer the last few years, cascaded-regression (CR) based
methods have shown impressive results in automatic

facial landmark detection [1]–[6] in uncontrolled scenarios,
as compared to the traditional ways of using Active Shape
Models (ASM) [7], Active Appearance Models (AAM) [8],
Constrained Local Models (CLM) [9] etc. Typically, a face
shape is represented by the coordinates of P landmarks
s = [x1, y1, · · · , xP , yP ]T . Given a facial image I and an
initial face shape estimate, s0, the aim of facial landmark
detection is to find a shape updater U:

U : f(I, s0) 7→ δs, (1)

s.t. ‖s0 + δs− ŝ‖22 = 0

where f(I, s0) is a shape-related feature mapping function, δs
is the shape update and ŝ is the ground truth shape.

The success of CR-based approaches emanates from four
sources: 1) cascading a set of regressors greatly improves the
representation capacity of a discriminative model; 2) local
feature descriptors used in CR are much more robust than
conventional pixel intensities; 3) the non-parametric shape
model adopted in CR can express deformable objects, e.g.
a human face, in more detail compared to a PCA-based
parametric shape model; 4) the latent shape constraint of
the coarse-to-fine cascade structure promotes the speed of
convergence as well as accuracy of the detection result.
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Fig. 1. A 3-wide and D-deep random CR copse.

In the development of a CR-based framework, there are
two crucial design issues: 1) the cascade structure and 2)
the method to extract local features. Perhaps the most widely
adopted approach to the first issue is to simply concatenate
a set of regressors in series [1], [3], [10]. Another successful
cascade design is the two-layer structure used by [2] and [4],
in which boosted regression was used for training a strong re-
gressor with a sequence of weak regressors, each consisting of
many sub-regressors. Regarding the second issue, both hand-
crafted and learning-based feature extraction methods have
been adopted. As an example of hand-crafted features, Xiong
and De la Torre [3] used SIFT for facial landmark detection
and tracking, and put forward a theoretical underpinning of
cascaded regression as a supervised descent method (SDM).
Yan et al. [10] have compared different hand-crafted local
feature descriptors (HOG, SIFT, Gabor and LBP) and found
that the HOG descriptor worked best. However, the hand-
crafted feature extraction methods are not designed for the
task of facial landmark detection specifically, whereas the
learning-based feature extraction methods are self-adapting to
the task [2], [4]. For example, cascaded Convolutional Neural
Networks (CNN) have been successfully applied to facial
landmark detection [5], [6]. The advantage of CNNs is that
they fuse the tasks of feature extraction and network training
in a unified framework. However, many free parameters need
to be tuned when using CNNs. Subsequently, Ren et. al. [11]
proposed a local binary feature learning approach that achieved
great success both in accuracy and efficiency.

Through our early experiments, we found that simply using
a strong regressor with a set of weak regressors in series
performed badly in cases with occlusions and large-scale pose
variations, confirming the observation made in [3]. Further-
more, it usually fails in the presence of deformation and scale
variation of the human face. To counteract these problems, this
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paper presents an adaptive Random-CR-Copse (R-CR-C) with
two main contributions to the field: 1) We propose a new copse
design with multiple CR threads in parallel. Each CR thread
is trained on a subset generated by random sub-sampling from
a pool of training examples. The proposed copse structure
enhances the generalisation capacity of the trained strong
regressor by fusing multiple experts. The independence among
CR threads in the copse allows us to train them efficiently
in parallel. 2) We propose an adaptive scheme for robust
shape update and local feature extraction to counteract the
deformation and scale variation of facial images. Compared
to state-of-the-art algorithms, the proposed adaptive R-CR-C
shows 15% improvement in accuracy on the newly released
COFW benchmark [4].

II. REVIEW OF CASCADED REGRESSION

Given a new image I′ and an initial shape estimate s′0, the
aim of a CR-based approach is to find a shape model updater
to approach the true shape, as shown in equation (1). In a
standard CR-based approach [1], [3], [4], the shape updater is
a strong regressor formed by D weak regressors in series:

R = r1 ◦ · · · ◦ rD, (2)

where rd = {Ad,bd} (d = 1 · · ·D), Ad is the projection
matrix and bd is the offset of the dth regressor. Both Ad and
bd are learned recursively from a set of labelled facial images.
This is discussed in detail in the next section. Assuming
we have already trained a strong regressor R, then, in the
detection phase, we apply the first weak regressor to update
the current shape s′0 to a new shape s′1 and then pass s′1 to the
second weak regressor and so on, until the final shape estimate
s′D is obtained. More specifically, the dth shape is obtained by:

s′d = s′d−1 +Ad · f(I′, s′d−1) + bd. (3)

Note that the shape-related feature f(I′, s′d−1) is also updated
after applying a new weak regressor to the current shape
estimate. The process of facial landmark detection using a
CR-based approach is schematically represented in Fig. 2.

Input: Test image I′, initial shape estimate s′0 and a pre-
trained cascaded strong regressor R = {r1 ◦ · · · ◦ rD}.
Output: Final facial shape estimate s′D.
Repeat:
for d = 1 · · ·D

Obtain shape-related features f(I′, s′d−1),
Update current shape s′d−1 to s′d using (3).

end
Fig. 2. CR-based facial landmark detection.

III. ADAPTIVE RANDOM CR COPSE

In this section, we present the proposed R-CR-C structure
design and the adaptive scheme. The key innovative idea is to
design multiple cascaded regressors and fuse their estimates
to obtain a better face shape estimate.

A. Random CR copse (R-CR-C)

We define the width W as the number of CR threads in
a copse, and the depth D as the number of weak regressors
in each CR thread. Fig. 1 illustrates a copse with three CR
threads. Given a training dataset with N labelled facial images
T = {I1, . . . , IN}, we generate W subsets {T1, . . . ,TW } by
applying random sub-sampling on T. Each subset is used to
train a single CR thread of the copse:

U = {R1,R2, . . . ,RW }, (4)

where the wth CR thread Rw = rw,1 ◦ · · · ◦ rw,D contains D
weak regressors trained on the wth subset. In contrast to train-
ing a single CR from all training examples, the procedure of
random sub-sampling produces different experts (CR threads).
This improves the generalisation capacity and achieves a better
balance between over-fitting and reduced accuracy of the
system by fusing the outputs of different experts. The proposed
adaptive training of all the weak regressors in each CR thread
will be described in the second part of the next subsection.

B. An adaptive scheme

Given a set of training images and their ground truth shapes,
the initial shape estimates are obtained by putting a reference
shape in the detected face bounding boxes. This is discussed
in section IV-A. We can either use the mean shape [3] or a
randomly selected shape [2] as the reference shape. To train
the weak regressors, we need to obtain the extracted shape-
related features of all initialised shapes and the differences
between the initialised shapes and the ground truth shapes.

1) Adaptive local feature extraction: To extract the shape-
related features, we could apply a local feature descriptor
on a fixed-size neighbourhood of each landmark and then
concatenate the extracted features into one vector. However,
the local patches cropped from this fixed-size neighbourhood
can be dramatically different in their content due to the
deformations and scale variations of faces; e.g. we may crop
the whole face part from a small face and only the nose
part from a large face, as shown in Fig. 3. One solution of
this problem is to resize all faces to a unified scale using
the estimated face size from the face bounding box provided
by a face detector [3], [10]. However, this strategy has two
drawbacks: 1) the bounding box initialised by a face detector
is too rough to accurately estimate the scale of a face; 2)
resizing all images is computationally costly when we have a
large number of images.

To meet the demands of scale-invariant local feature extrac-
tion, we propose an adaptive scheme. Rather than using a fixed
neighbourhood, we set the patch size Sp(d) of the dth weak
regressor in a D-deep CR to:

Sp(d) = Sf/(K · (1 + ed−D)), (5)

where K is a fixed value for shrinking and Sf is the size of
the face estimated from the previous updated shape sd−1. We
can set Sf to either the distance between the pupils, or the
distance between the mean of the two outer mouth corners
and the mean of the two outer eye corners, or the maximum
of these two distances. In this paper, we use the last of these
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Fig. 3. Local patches as well as the shape updates between two facial images
can be very different due to scale variations of the face.

three. As Sf is calculated from the previous updated shape
directly, it is not very accurate after the first regressor, due to
the rough initial shape estimate from the face bounding box.
However, the estimate becomes more accurate as the current
shape gets closer to the true value. Furthermore, it is worth
noting that equation (5) involves a multi-scale technique, i.e.
a bigger patch size for the first weak regressor and smaller
patch size for the subsequent weak regressors, similar to [10].
For instance, when we set Sf to the pupil distance and pick
the shrinking parameter K = 2 for a 5-deep CR copse, the
patch size decreases from half size of the inter-ocular distance
for the 1st weak regressor to a quarter for the last one. Finally,
we resize these patches to a fixed size, 30 × 30 in our case,
and then extract local features.

2) Adaptive shape update: The shape difference between
the initial shape and the ground truth shape is also highly
dependent on the face scale. For instance, the shape updates
vary greatly when we set the initial shape estimate of the nose
tip of each image in Fig. 3 at the centre of the left cheek.
Rather than using an absolute shape difference δs = ŝ−s0, we
propose to use a relative value δs/Sf . Suppose the number of
training examples in the wth training subset is Mw, we define
the objective function of the first weak regressor in the wth
CR thread as:

1

2Mw

Mw∑
i=1

‖ ŝ
i − si0
Sf (si0)

−Aw,1 · f(Ii, si0)− bw,1‖22

+ λ
∑
‖Aw,1‖2F , (6)

where ŝi is the ground truth shape of the ith image, si0 is the
initial shape estimate, Aw,1 and bw,1 are the projection matrix
and offset of the 1st weak regressor in the wth CR thread, and
λ is the weight of the regularisation term. The minimum of
this regularised cost function can be efficiently found by ridge
regression fitting [12, p. 225]. The subsequent weak regressors
in each CR thread are trained recursively using the updated
shapes by applying previously trained regressors to the current
shape estimates. It is worth noting that the classical CR is a
special case of the proposed R-CR-C when W is set to 1 and
Sf is set to a constant number.

The scale variation of human faces also affects the facial
landmark detection phase. Thus, the output of the wth CR

thread is obtained by modifying (3) to:

s′w,d = s′w,d−1+Sf (s
′
w,d−1)·(Aw,d·f(I′, s′w,d−1)+bw,d). (7)

The final estimated shape s′ of the proposed R-CR-C is
obtained by averaging the outputs of all the CR threads.

IV. EVALUATION

The proposed algorithm has been evaluated on two chal-
lenging benchmarks: LFPW [13] and COFW [4]. Images in
both are all ‘faces in the wild’, with 29 manually annotated
landmarks, as shown in Fig. 4.

A. Implementation details

The shape initialisation and training data augmentation were
performed in the same way as in [2] and [3]. Specifically, the
initial shape estimate was obtained by putting the mean shape
at the centre of the detected face bounding box. The training
data was augmented by randomly perturbing the initialised
shape estimates. The parameters of R-CR-C were tuned by
cross validation, where we set the width W to 3, the depth D
to 5 and 6 for LFPW and COFW respectively, and the weight
of the regularisation term λ to 900. For each random sub-
sampling on the original training dataset, we took 80% of all
training examples to generate a random subset. Because Yan
et al. reported that HOG worked better than SIFT, LBP and
Gabor [10], we used two HOG descriptors [14]: Dalal-Triggs
HOG (DT-HOG) [15] and Felzenszwalb HOG (F-HOG) [16].
We also used a learning-based 3-layer Sparse Auto-Encoder
(SAE) [17] [18] to make a further comparison. For the SAE
training, we set the sparsity to 0.025, the regularisation to
1× 10−4 and the cost of the sparsity constraint to 5.

We measured the accuracy in terms of the average distance
between the detected landmarks and the ground truth, nor-
malised by the inter-ocular distance. It was calculated both on
17 and all 29 landmarks, where the former is the well-known
‘me17’ measurement [9], shown in Fig. 4. We also measured
the failure rate as the proportion of failed detected faces (i.e.
whose average fitting error was larger than 10% of the inter-
ocular distance), and the speed (fps). Our results were obtained
using a single core 3.0 GHz CPU and MATLAB.

B. Comparison on LFPW

Although LFPW is a widely used benchmark for facial
landmark detection, it only provides hyperlinks to the images.
We were only able to download 797 training and 237 test
images because some of the hyperlinks have expired. This
is a common problem for experiments on LFPW. All results
in [2]–[4], [11], [19], [20] are based on different numbers of
training and test images. This is the main reason for also using
the newly proposed COFW benchmark.

A summary of the performance obtained by state-of-the-art
methods and the proposed algorithm using SAE, F-HOG and
DT-HOG is shown in Table I. The proposed method beats
the other algorithms both in accuracy and failure rate, at a
competitive speed. Note that the speed of [11] does not include
the time used for loading an image (around 20ms per image
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Fig. 4. Left: Comparison with Belhumeur et al. [13] and Zhou et al. [19] on all 29 landmarks of LFPW. Right: All 29 landmarks, and the 17 landmarks used
for the me17 measurement (squared landmarks).

TABLE I
COMPARISON ON LFPW.

Method
Error (×10−2)

Failures Speed(fps)
me17 me29

Asthana et al. [20] 6.50 - 5.74% 1
Belhumeur et al. [13] 3.96 3.99 ≈6% 1
Zhou et al. [19] 3.89 3.92 - 25
Cao et al. [2] - 3.43 - 20
Xiong and Torre [3] - 3.47 - 30
Burgos-Artizzu et al. [4] - 3.50 2.00% 12
Ren et al. [11] - 3.35 - 4200
Results by Human [4] - 3.28 0.00% 0.03
R-CR-C + SAE 3.29 3.31 0.84% 21
R-CR-C + F-HOG 3.37 3.35 1.27% 23
R-CR-C + DT-HOG 3.82 3.81 1.69% 26

for us on a 7200rpm hard disk) and it was measured on a more
powerful CPU. At the same time, the use of an SAE shows
competitive results compared to HOG descriptors. To the best
of our knowledge, this is the first time that the use of an SAE
has been explored in facial landmark detection. To gain a better
understanding of the error distribution for different landmarks,
we compare the detection error for all 29 landmarks in Fig. 4
with that of two state-of-the-art exemplar-based algorithms. It
shows that the performance of the proposed approach is much
more robust, especially for the landmarks at the eyebrows and
chin (points 1, 2 and 29).

C. Comparison on COFW

The COFW benchmark consists of 1345 training images and
507 test images. It is much more challenging than LFPW due
to strong pose variations and occlusions. As the performance
of the SAE has been demonstrated to be better than HOG,
we only present the results based on the SAE in this section.
We first evaluate the proposed R-CR-C as a whole system on
COFW. Comparisons on COFW with [21], [2] and [4] confirm
the superiority of the proposed adaptive R-CR-C in accuracy,
failure rate and speed (Fig. 5).

To examine the respective contributions of the proposed
adaptive scheme and R-CR-R structure, we measured the

Fig. 5. Comparison of the proposed R-CR-C with 1 and 3 CR threads on
COFW to Zhu and Ramanan [21], Cao et al. [2] and Burgos-Artizzu et al. [4].

performance of using only a single CR-based regressor trained
on all training images, the proposed R-CR-C approach with
3 CR threads and their adaptive versions individually in Fig.
6. The results show that the use of our adaptive strategy and
copse structure contribute to a similar extent. When both are
used at the same time, the best performance is obtained.

Finally, to evaluate the accuracy and robustness of the pro-
posed R-CR-C when using a different number of CR threads,
we repeated the random sub-sampling several times to generate
different adaptive R-CR-C regressors with different number of
CR threads, and measured their accuracy in landmark detection
with errorbars. Fig. 7 shows that the use of more CR threads
improves both accuracy and robustness of the whole system.

V. CONCLUSIONS

In this paper, we proposed a novel R-CR-C structure with
an adaptive scheme for robust facial landmark detection. We
demonstrated that with multiple CR threads in parallel we are
able to improve the generalisation capacity of the learning-
based system. Also, we showed that the proposed adaptive
scheme used for model training and local feature extraction
makes the proposed R-CR-C approach more robust to scale
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Fig. 7. Comparison on COFW using different number of CR threads.

variations and deformations of human faces. Moreover, the
experimental results obtained on two challenging benchmarks
using a sparse autoencoder demonstrate the superiority of the
proposed algorithm compared to the state of the art.
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